Comment Letter AL050 Continued

Honorable City Council

July 30, 2004

The PEIRS concludes, among these three alternative systems, that the HST is the Preferred System Alternative. The Summary section of the PEIRS, on pages S-9 to S-16, a copy of which is attached, provides a comparison of the three alternatives with regard to the environmental issues listed above. As stated on page S-15 of the Summary section, the advantages of the proposed HST Alternative include the following:

- "The HST system would provide a new mode of intercity travel and an improved level of connectivity between existing transportation modes (air, highway, transit) that would not be provided under the No Project or Modal Alternative.

- For longer distance inter-regional markets such as downtown San Francisco to downtown Los Angeles, the HST Alternative would provide door-to-door travel times that would be comparable to air transportation and less than one half as long as automobile travel times.

- The HST alternative would provide a completely separate transportation system that would be less susceptible to many factors influencing reliability, such as capacity constraints, congestion, and incidents that disrupt service.

- The HST Alternative would be highly compatible with local and regional plans that support rail systems and transit-oriented development and would offer opportunities for increased land use efficiency."

For those, and other reasons described in the PEIRS, LADOT agrees that the HST Alternative is the Preferred System Alternative, among the three alternatives compared.

In the Final PEIRS, which will be prepared after the close of the public comment period on the Draft PEIRS, the Authority and the Federal Railroad Administration may select a preferred HST Corridor alignment, general station locations, and recommended mitigation strategies. At a further stage, should the HST advance to a further stage of analysis, project-specific environmental analyses for route segments and station locations will be prepared.

Policy Evaluation

As stated above, the focus of the PEIRS is to compare the No Project, Modal and High Speed Train Alternatives. LADOT concurs with the PEIRS that, based upon the evaluation criteria utilized, the High Speed Alternative is the Preferred Alternative System.

However, the City's interest in the HST goes well beyond the scope of the PEIRS. If the HST is selected as the Preferred Alternative, and subsequent "project level" studies commence, the City needs to ensure that HST planning addresses the City's concerns regarding local impacts. Furthermore, the City needs to coordinate alternative analyses along certain corridors within the Southern California region, where proposals for the HST appear to overlap with SCAG's (Southern California Association of Governments) Maglev system proposals, to determine the best technology for each corridor.

Stated another way, there should be an effort to define the HST network utilizing a combination of technologies that would make sense for the corridors that make up parts of the network.

To facilitate further evaluation of the HST system, LADOT has identified technical and policy evaluation criteria by which the proposed HST may be evaluated. Most of these criteria apply not just to the HST system but also to any other large scale transit project in the region. LADOT has organized its evaluation into benefits and concerns for the City of Los Angeles.

A. Benefits of High Speed Train

The probable benefits of the proposed High Speed Train include the following:

1) Performance

Issue: Will the proposed system attract sufficient ridership to substantially relieve automobile congestion, by providing a compelling alternative to intercity air and automobile travel, with corresponding benefits to air quality?

According to the PEIRS, because the HST would offer competitive travel times and fares to both air and auto travel, the HST system would attract up to 65 million intercity and commuter passengers annually by 2020.

For example, the point-to-point travel time between downtown San Francisco and downtown Los Angeles would be closely competitive with commercial air travel (approximately 3 1/2 hours). According to the HST Business Plan (approved in the year 2000), the one-way business fare would be approximately $42 and the one-way non-business fare would be $24. By 2020, the Business Plan projects that the HST will generate surplus revenue because of its competitive fare structure. Corresponding benefits to air quality are listed on page S-11 of the attached Summary of the PEIRS.

-5-
Comment Letter AL050 Continued

Honorable City Council
July 30, 2004

2) Relationship to Existing Transit Service

Issue: Does the proposed system primarily complement, rather than compete with, existing transit infrastructure, specifically Metrolink service and MTA bus service?

The proposed HST would not, in general, compete with existing Metrolink and MTA transit service, primarily because the HST is an inter-regional service. In most cases, Metrolink service would serve as a part of the “feeder” service to the HST system, and not be in direct competition with the HST.

With regard to the corridor between Los Angeles and Ontario, Metrolink staff has indicated that Metrolink service could probably be more easily expanded along the Interstate 10 route than along the Interstate 60 route, because of right-of-way constraints on the Interstates 60 route. A benefit of the proposed HST, is that it would not share the same right-of-way with Metrolink along the Interstate 10 Freeway. The proposed HST alignment would, in general, follow the Interstate 60 Freeway, to the south (using an existing freight rail alignment).

3) Technological Compatibility With Existing Rail Infrastructure

Issue: Are there potential benefits of the ability of the HST and Metrolink to “share track” on selected sections of corridor?

Although the HST would be electrically powered, and the Metrolink system is diesel powered, the two systems can utilize the same track. While a completely dedicated train technology using separate tracks would be required on the majority of the proposed HST system, because of extensive urban development and severely constrained right-of-way, HST service in certain areas may need to share tracks with existing passenger rail services. For example, the PEIRS proposes that HST share tracks with existing rail on the corridor between San Francisco to San Jose and along the existing LOSAN corridor between Los Angeles Union Station and Orange County. Sharing the tracks facilitates access to HST because it makes the interface between commuter rail systems, such as Metrolink, an ideal feeder to the HST.

In addition to facilitating access, sharing track with regional commuter services could help mitigate problems with the current commuter systems. The HST project would include grade separation of the rail with streets and highways resulting in safety and service improvements for local long-distance commuters, improving traffic flow at rail crossings, and reducing noise impacts (by eliminating train noise and warning gates from existing rail services).

In the Bay Area, the Authority has concluded that the HST will “share” tracks with express Caltrain commuter service between San Jose and San Francisco. The Authority should continue to investigate the opportunity to partner with Metrolink in Southern California, to determine if Metrolink could potentially provide express regional commuter services on the HST tracks throughout the Los Angeles Metropolitan Area (Los Angeles to Palmdale, Los Angeles to the Inland Empire, and Los Angeles to Orange County).

4) Support of Aviation Plan

Issue: Will the proposed system relieve aviation demand on Los Angeles International Airport (LAX), by providing an alternative inter-regional travel mode, and by providing ground access to Ontario and Palmdale Airports?

The Authority believes that the PEIRS proposal would reduce short-haul aviation demand within the State by providing an intercity high speed rail alternative, thus reducing demand for air travel and congestion around airports. The magnitude of the impact on aviation demand is evident in the Authority’s estimate that the HST system will divert at least 14.7 million passengers from air transportation by 2020. Accordingly, the Authority estimates that availability of the HST would divert over half of the year 2020 air passenger trips, which have both origin and destination within California.

With regard to access to Ontario and Palmdale Airports, the HST system includes a proposed line between LAX via Union Station to Ontario Airport, and a proposed line between Union Station and the Antelope Valley. The City Council has indicated its strong support of the connection from Union Station to the Antelope Valley, as compared with the alternate proposed line via Interstate 5.

5) Reliability

Issue: Does the proposed transit technology have a proven track record with regard to reliable operations and service?

The HST system would utilize an electrically powered high speed steel-wheel on steel-rail technology similar to that which is in use in many countries, including Japan, France and Germany. Over several decades of use, the technology has proven itself in terms of reliable operations and service. For example, according to...
the Authority, the Shinkansen in Japan has operated for nearly forty years carrying well over 8 billion passengers without a single train-related fatality. Nearly 300 high speed trains operate daily on the "Tokaido" line between Tokyo and Osaka with an average deviation from schedule per train of less than 20 seconds. According to the Authority, statistics from HST operators in Europe further confirm the high level of reliability of HST technology. In France, more than 98% of the TGV train runs have been completed within one minute of schedule.

6) Ownership

Issue: Would the ownership of the system be public or private sector?

The proposed HST would be publicly owned. Public sector ownership avoids the problem of a "non-competitive" clause which accompanies private sector ownership. In order to ensure profitability, private owners of transit systems usually require public agencies which control adjacent arterial and transit systems to sign a non-competitive agreement. Such an agreement either precludes the public sector from making improvements to public transportation systems which might reduce use of the private system, or the agreement requires that the public sector compensate the private entity for lost revenue.

The problems of private ownership were illustrated recently when the private owner of the 91 Express Lanes, based upon a "non-compete" clause in the franchise agreement with Caltrans, sued Caltrans to prevent improvements from being made to the 91 Freeway. The private developer prevailed in court and the Orange County Transportation Authority (OCTA) was forced to purchase the 91 Express Lanes for $207.5 million in January 2003.

The proposed public ownership of the HST system offers the benefit of avoiding the difficulties inherent with private ownership and a "non-compete" clause.

7) Job Creation for Construction and Operations

The proposed HST would be the largest capital works project in the history of California. The PEIRS estimates the construction of the project would directly result in 350,000 job-years employment over the construction period, and that because Caltrans would have a stronger economy if the HST system is built, there would be about 250,000 additional permanent jobs by 2035.

8) Grade Separation

The proposed HST would be fully grade separated at streets and highways, with the track either at grade, in an open trench or tunnel, or on an elevated guideway along various parts of the route. The proposed HST may offer the advantage of shared, grade separated, track with other forms of rail transit. In such cases, those other forms of rail transit would benefit from any newly constructed grade separations. Additionally, automobile traffic would also benefit from any newly constructed grade separations, resulting in congestion relief.

B. Concerns Regarding High Speed Train

LADOT has identified the following concerns regarding the proposed HST:

1) Cost of Feeder System and Station Impacts

Issue: To what extent will the necessary "feeder system" for the HST be paid for by HST project financing? To what extent does the proposed HST alignment and stations have a significant impact on adjacent communities and streets?

To ensure adequate ridership for the HST, there will need to be sufficient "feeder" or distribution systems. Although existing Metrolink rail and MTA bus service appear to be primarily complementary to the HST system, there will be a need for substantial additional infrastructure. Additional bus, rail, arterial and parking capacity must be provided. The HST system should share in any expanded highway and transit project costs that may be incurred by local entities.

The PEIRS does not specifically include a financing plan for the system. However, in 2002, the Legislature and Governor approved Senate Bill 1566 which, subject to voter approval, would provide for the issuance of $9.95 billion of general obligation bonds, $9 billion of which would be used in conjunction with available federal funds for the purpose of funding the planning and construction of a HST system. The remaining $950 million of the bond proceeds would be available for capital projects on other passenger rail lines to provide connectivity to the HST system for capacity enhancements and safety improvements to those lines. The City should ensure that it receives a fair allocation of the $900 million designated for such improvements. In addition, the City should be aware that there will probably be additional "feeder system" costs, not covered by the bond measure. Until project studies are completed, it is not possible to determine the extent of local impacts and...
Comment Letter AL050 Continued

HONORABLE CITY COUNCIL

July 30, 2004

addional costs.

If the HST is selected as the Preferred Alternative, proposed alignment and station impacts must be addressed in subsequent "project-level" studies. The PEIRS proposes only three stations in the City of Los Angeles, including Union Station (or its vicinity), Sylmar and LAX. Local impact issues which will need to be addressed include:

- Impacts on traffic circulation and congestion around stations
- Location and cost of new parking facilities
- Specifically regarding Union Station, the probable need to enlarge pedestrian tunnels servicing the station, to allow for peak period usage

2) Phasing of HST Deployment

Issue: Will initial segment(s) of the HST be built in the City of Los Angeles and the Southern California region?

The Southern California region deserves, by virtue of its need (congestion and air quality problems), as well as the size of its population, to be an early recipient of the benefits of the HST. Accordingly, the City wishes to ensure that a significant portion of the initial segments of the HST system be constructed in Southern California. Because the PEIRS does not establish a phasing sequence, the City must convey its concerns to the Authority with regard to project phasing.

It should be noted that, although the City Council has not in the past indicated a preference for HST phasing, the Council has indicated a preference for phasing of the proposed Maglev system. Specifically, on June 28, 2000, the City Council (CF 00-1238) indicated that it would only support the Maglev proposal if the project included as 1st Phase: Riverdale to Union Station, and 2nd Phase: Palmdale to Union Station.

Furthermore, the PEIRS does not identify minimum operable segments (MOS). If the HST were to be built in phases, it would be preferable for each phase to represent an MOS, so that the benefits of the system could begin to accrue incrementally. The City recommends that the Authority identify MOS in future studies.

3) Relationship of HST to Proposed Maglev High Speed Rail system

Issue: Does the proposed HST system integrate with and complement the Maglev system, proposed by SCAG?

Although the HST system is primarily an inter-regional system, and the Maglev system would be primarily an intra-regional system, there are overlaps in the proposed alignments. For example, both systems have alignments from LAX (or West Los Angeles) to Ontario. Since both systems would have stations spaced at similar intervals (every 15 to 20 miles), and would travel at average speeds of approximately 160 mph, we question whether both systems are needed on this corridor.

Moreover, since both systems employ different technologies, which use incompatible track, the need for passengers to transfer between trains will probably be greater if both systems are deployed. If both systems are deployed, every effort should be made to avoid unnecessary overlap in alignments and to facilitate transfers between the two systems.

At the direction of City Council, LADOT is negotiating with SCAG to ensure that grants from the Federal Railroad Administration provide funding for an alternatives study, to determine the most appropriate technology and alignment for high speed rail along the Los Angeles to Ontario corridor. Also participating in those discussions and negotiations are the City of Ontario, and the San Bernardino Council of Governments.

4) Consistency with the Transportation Element of the City’s General Plan and other City Plans

Issue: The City has numerous plans, including the General Plan, Community Plans and Specific Plans which may be impacted by the proposed HST

To the extent the City’s various plans are impacted by the HST, the community plans will need to be revised to reflect the proposed system. In addition, if the Authority includes a connection to LAX in the final PEIRS, the LAX Master Plan will need to be revised accordingly. Furthermore, Los Angeles World Airports is currently developing Master Plans for both Ontario International and Palmdale Regional airports. The City requests that, in the next phase of HST environmental impact reports, the Authority seek to coordinate HST planning with the Master Plans for these airports.

-11-
Comment Letter AL050 Continued

Honorable City Council

July 30, 2004

5) Convenient access to existing transit stations and regional airports

Issue: Does the proposed HST project provide convenient access to existing transit stations and regional airports so as to facilitate the integration of regional transit and aviation systems, and maximize ridership?

In order for the proposed HST system to realize its potential and justify its cost, it must integrate with existing transportation systems. Specifically, the City is concerned that the HST connect as directly as possible with Union Station and with LAX, Ontario, and Palmdale Airports. Convenient connections, both in distance and time, between HST and these transportation hubs is essential in order for the benefits of HST to be realized. Upon the preparation and release of "project-level" HST plans, the City will provide further comments in this regard.

Conclusion

The objective of this report is to report on the specific finding of the PEIRS that the HST is the Preferred Alternative among the three alternative systems studied. LADOT concurs with this finding. In addition, the report has identified technical and policy evaluation criteria by which the proposed HST may be evaluated. LADOT has organized its evaluation into both benefits and concerns for the City. Based on this evaluation, LADOT finds that the proposed High Speed Train would provide substantial benefits for the transportation infrastructure for the City, the region and the State. The City should monitor and attempt to shape the development of the project to address the concerns which have been identified and to ensure that the project best represents the City's interests.

FISCAL IMPACT STATEMENT

This report represents comments only to the draft PEIRS, and has no impact on the City's General Fund.

COORDINATION

A preliminary report on the PEIRS was made to the Transportation Committee on May 12, 2004. Since that time, staff has discussed the issues with LAWA, the Environmental Affairs Department and the Planning Department, as well as SCAG, MTA, Caltrans, and the California High Speed Rail Authority.

Attachments

-12-
5.6 SYSTEM-WIDE ENVIRONMENTAL IMPACT COMPARISON

The Draft Program EIR/EIS analysis shows that the No Project, Model, and HST Alternatives would have differences in both potential adverse and beneficial environmental impacts at the system-wide level. These differences, summarized in Table 5.6-1, are based on the analysis presented in Chapter 3, Affected Environment, Environmental Consequences, and Mitigation Strategies. Even for many of the environmental areas discussed in Table 5.6-1, the quantified impacts represent gross within which potential impacts might occur. For example, the area of floodplains includes all floodplains within 100 feet (30 meters) of either side of the centerline of the alignment considered. However, the actual right-of-way necessary for the improvements considered is much smaller (e.g., only 25 feet [8 meters] on either side of centerline for HST). Therefore, the magnitude of potential impacts reported is considerably larger than the actual impacts that would be expected from either the HST or Model Alternative.

The analysis for this Program EIR/EIS used the best available information concerning environmental resources as applied in a statewide geographic information systems (GIS) database. No significant adverse impacts or key differences among the alternatives are described in Chapter 3 for geology, hydrogeologic interference, (GHF/FEH), public utilities, or hazardous materials; therefore, these topics are not shown in the summary table.

Mitigation strategies are described at a project level for potential adverse impacts identified for the HST Alternative in noise, cultural resources, visual contrasts, biology, wetlands, ponderal, and hydrology (shown on Table 5.6-1). The significance of potential environmental impacts would be further determined at the local level of environmental review and specific mitigation measures identified. The subsequent analysis and field studies that would be necessary at the next level of environmental review are not discussed, and they would offer further opportunities to make changes to the alignments and station locations in order to avoid and to substantially reduce significant impacts on these resources. Project-specific environmental impacts and mitigation measures to address significant impacts would be described during the next stage of environmental review, should the project move forward.

Table 5.6-1 Summary of Key Environmental Impacts and Benefits for System Alternatives

<table>
<thead>
<tr>
<th>Key Environmental Issue</th>
<th>Alternative</th>
<th>No Project</th>
<th>Model</th>
<th>HST</th>
<th>Mitigation Strategy for HST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic and Circulation</td>
<td>Capacity is insufficient to accommodate projected growth. Due to limited number of facilities, some stations would operate at considerable levels of service with increased congestion, travel delays, and increased travel times compared to existing conditions. Congestion would increase.</td>
<td>Capacity reduction on existing highways compared to the No Project and HST Alternatives. However, the analysis could not account for potential use of excess capacity by non-expressway commuter and short-distance trips. Capacity reduction on existing highways compared to the No Project Alternative. However, the analysis could not account for potential use of excess capacity by non-expressway commuter and short-distance trips. 34 million fewer trips, 90 to 400 travel time savings per passenger and operational improvements.</td>
<td>Capacity reduction on existing highways compared to the No Project and HST Alternatives. However, the analysis could not account for potential use of excess capacity by non-expressway commuter and short-distance trips. 34 million fewer trips, 90 to 400 travel time savings per passenger and operational improvements.</td>
<td>Capacity reduction on existing highways compared to the No Project and HST Alternatives. However, the analysis could not account for potential use of excess capacity by non-expressway commuter and short-distance trips. 34 million fewer trips, 90 to 400 travel time savings per passenger and operational improvements.</td>
<td>Encourage use of transit to decrease travel time and reduce congestion at stations.</td>
</tr>
</tbody>
</table>
Comment Letter AL050 Continued

Key Environmental Issues

<table>
<thead>
<tr>
<th>No Project</th>
<th>Alternative</th>
<th>Mitigation Strategy for HSRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td>Emissions predicted to decrease in 2030 due to low emission vehicles, PHPR to increase stations. Estimated CO ~800,000 tons/year; NO, 41,972 tons/year; SO2, 2,500 tons/year; VOC, 10,000 tons/year.</td>
<td>Vehicle miles traveled decrease by 1.6% over 2020 No Project: CO: 152,547,304 to 151,447,904; NO: 41,972 to 41,723; SO2, 2,500 to 2,483; VOC, 10,000 to 9,968. Control of construction-related emissions.</td>
</tr>
<tr>
<td>Energy Use</td>
<td>24.3 million barrels of oil consumed annually in 2005, 5.8 million over existing conditions.</td>
<td>Higher total energy consumption: 24.5 million barrels of oil compared to No Project. Increase in energy consumption due to increased demand for energy.</td>
</tr>
<tr>
<td>Land Use (compatibility and property impacts)</td>
<td>Improved access to existing areas and increases in commercial and industrial development on open space and agricultural lands.</td>
<td>Improved access to existing areas and increased commercial and industrial development on open space and agricultural lands.</td>
</tr>
</tbody>
</table>

Comment Letter AL050 Continued

Key Environmental Issues

<table>
<thead>
<tr>
<th>No Project</th>
<th>Alternative</th>
<th>HSRT</th>
<th>Mitigation Strategy for HSRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Quality</td>
<td>No predictable change to existing landscape.</td>
<td>Low to moderate impacts along existing highways and airports; high structural impacts on railings and natural open space.</td>
<td>Minimal to high visual contrasts for elevated structures; high sensitivity to wind and snow.</td>
</tr>
<tr>
<td>Noise</td>
<td>More traffic; more noise; more noise; more noise.</td>
<td>215 to 177 mc (270 to 177 dBA) for 147% of alignment length.</td>
<td>Consider sound barriers along noise-susceptible corridors; track treatment for vibration.</td>
</tr>
<tr>
<td>Farmland (includes area not within 50 feet [15 m] on each side of alignment corridor (100 ft or 30 m limit))</td>
<td>No predictable change from existing conditions.</td>
<td>Right-of-way needs for ROW could potentially impact a total of 1.189 ac (476 ha) of farmlands.</td>
<td>Right-of-way needs for ROW could potentially impact a total of 0.472 ac (195 ha) of farmlands.</td>
</tr>
</tbody>
</table>

Page 5-11
Key Environmental Issues

<table>
<thead>
<tr>
<th>Biological Resources and Wetlands (Includes area within 1,000 ft [305 m] or 2,000 ft [610 m] for urban areas, 0.25 mi [404 m]; 0.5 mi for undisturbed areas), and 0.5 mi for urban areas on each side of alignment corridor)</th>
</tr>
</thead>
</table>
| No predicted change from existing conditions.
| 77,018 ac (31,168 ha) of sensitive habitat; 23,172 ac (9,337 ha) of wetland, over 6 million linear ft of jurisdictional wetlands; 321 special-status species. |
| Work with researchers to develop site- specific mitigation and rework strategies for project-level review.
| 9,773 to 17,614 ac (39.3 to 71.4 ha) of sensitive habitat; 1,964 ac (791 ha) of wetland, over 6 million linear ft of jurisdictional wetlands; 278 to 356 special-status species. (Range based on alignment options selected to be pruned by the HST system.) |

<table>
<thead>
<tr>
<th>Hydrology and Water Resources (Includes area within 60 ft [18 m] on each side of alignment corridor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No predicted change from existing conditions.</td>
</tr>
<tr>
<td>5,570 ac (2,242 ha) of floodplain, 3.3 million linear ft of streams, 2,096 ac (843 ha) of jurisdictional wetlands, 31,946 ac (12,960 ha) of groundwater resources within 100 ft (30 m).</td>
</tr>
<tr>
<td>Avoid or minimize impacts in floodplains; conduct preliminary site-level analysis of surface hydrology and coastal geomorphology; design for construction as part of North Valley Water Commission Plan.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 4(f) and 6(f) (Public Parks and Recreation) (Includes area within 900 ft [274 m] on each side of alignment corridor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No predicted change from existing conditions.</td>
</tr>
<tr>
<td>323 Section 4(f) properties affected; 8 wildlife refuges.</td>
</tr>
<tr>
<td>Consider design options to avoid and minimize impacts to wildlife refuges; identify potential site-specific mitigation measures.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cultural Resources (excluding Section 4(f) and 6(f) cultural resources)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low ranking for impacts on archaeological resources and historic properties.</td>
</tr>
<tr>
<td>Medium ranking for potential impacts on archaeological resources and historic properties.</td>
</tr>
<tr>
<td>Develop mitigation guidelines for potential impacts on archaeological resources and historic properties.</td>
</tr>
</tbody>
</table>

Summary

<table>
<thead>
<tr>
<th>No Project</th>
<th>Alternative</th>
<th>HST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Resources and Wetlands</td>
<td>No Project</td>
<td>Alternative</td>
</tr>
<tr>
<td>Hydrology and Water Resources</td>
<td>No Project</td>
<td>Alternative</td>
</tr>
<tr>
<td>Section 4(f) and 6(f) (Public Parks and Recreation)</td>
<td>No Project</td>
<td>Alternative</td>
</tr>
<tr>
<td>Cultural Resources (excluding Section 4(f) and 6(f) cultural resources)</td>
<td>No Project</td>
<td>Alternative</td>
</tr>
</tbody>
</table>

As summarized in Table 5.6-1 above, the environmental evaluation showed key differences between the Modal and HST Alternatives at a system-wide level. The following discussion further describes these key differences for the Modal and HST Alternatives.
Comment Letter AL050 Continued

Both the Modal and HST Alternatives would result in reduced travel times and congestion compared to the No Project Alternative. The highways and air transportation improvements of the Modal Alternative would result in a greater reduction of highway congestion than the HST alternative. However, congestion would still increase on highways and airports compared to existing conditions for both the Modal Alternative and the HST Alternative.

The proposed HST system would provide a new mode of intercity travel and an improved level of connectivity between existing transportation modes (air, highway, transit) that would not be provided under the No Project or Modal Alternative. For longer-distance intercity markets such as San Francisco to Los Angeles, the HST Alternative would provide door-to-door travel times that would be comparable to air transportation and less than one half as long as achievable travel times. For intermediate intercity trips such as Fresno to Los Angeles, the HST Alternative would provide considerably shorter travel times than either air or automobile transportation, and would bring frequent HST service to many parts of the state that are not well served by air transportation. The HST Alternative would provide a completely separate transportation system that would be less susceptible to many factors influencing reliability, such as delays, conditions, and impacts of design service. In addition, since high-speed trains are able to operate in all weather conditions, the intramodal reliability of this mode of travel would be superior to travel by either auto or air. Based on experience with HST systems in other countries, HST has a lower accident and fatality rate than automobile travel. In terms of sustainable capacity, the HST Alternative would offer greater opportunities to expand service and capacity with minimal expansion of infrastructure, than either the No Project or Modal Alternatives. Finally, the passenger cost for travel via the HST service would be lower than for travel by automobile or air for the same intercity markets.

The HST Alternative has the potential to reduce overall air pollution and total energy consumption compared to the No Project and Modal Alternatives. Comparing the energy required by each mode to carry a passenger 1 mile (.6 km), an HST needs only about one-third that of an airplane, one-fifth that of a commuter automobile trip. In addition, the construction of the HST Alternative would require 34% less energy than the construction of the Modal Alternative.

The HST Alternative would be highly compatible with local and regional plans that support rail systems and transit-oriented development and would offer opportunities for increased use efficiency (i.e., higher density development and reduced rate of demand-based funds). The HST Alternative would also meet the need for improved inter-modal connectivity with existing local and commuter transit systems. In contrast, the highway improvements options under the Modal Alternative would encourage dispersal patterns of development and would be inconsistent with the objectives of many local and regional plans agencies to promote transit-oriented, higher-density development around transit nodes as the key to stimulate urban development that makes more efficient use of land and resources and can better sustain population growth. Urbanized areas in California are expected to grow by 47% between now and 2035 under the No Project Alternative. Under the Modal Alternative, urbanized area growth is expected to be about 1.4% (3.550 ac [14.517 ha]) higher than the No Project Alternative, while the HST Alternative would result in a slight decrease in urban area growth (2,106 ac [8,502 ha]) compared to the No Project Alternative. However, the HST Alternative is expected to result in a slightly greater increase in population than the No Project and Modal Alternatives.

Compared to the Modal Alternative, the proposed HST Alternative would result in construction of substantially fewer miles of transportation right-of-way (roughly 3,000 mi [4,828 km] which has potential for high impacts on sensitive land uses and populations). For similar alignment options, the HST would be expected to run adjacent to or within existing rail rights-of-way. While there would be a potential noise increase due to additional HST services, existing train noise would be reduced in areas with existing grade crossings because horns and crossing gate noise due to grade separation would be eliminated.

Under the Modal Alternative, land use impacts would be considerable in the San Francisco to San Jose and Oakland to San Jose highway corridors where the existing rights-of-way would not accommodate adding lanes, and additional properties would be needed to accommodate potential highway expansions. This would also be true along the urban portions of the San Francisco corridor through the Central Valley, and in Southern California along I-880 from Los Angeles to San Bernardino and Riverside. The HST Alternative would have lower impacts in these regions because of extensive use of existing rights-of-way (e.g., Caltrain from San Francisco to San Jose) and higher compatibility in general with land uses along the rail corridors.

In the Central Valley, one of the most active agricultural regions in the U.S., the right-of-way requirements of the Modal Alternative would potentially impact 606 ac (246 ha) of farmlands. The HST Alternative, based on the system-wide application of a 100-ft wide right-of-way, could potentially impact a maximum of 2,596 ac (1,002 ha) to 3,850 ac (1,548 ha). In addition, it is possible to avoid or substantially reduce potential impacts on farmlands in the HST right-of-way by reducing right-of-way width to 50 ft (15 m) in combined areas or, if appropriate agreements with the existing owners/tenants were developed and safety considerations were addressed, by placing the HST infrastructure completely within the existing rail right-of-way. Compared to the trend of farmland loss in California of 50,700 ac (20,413 ha) per year, or nearly 84,000 ac (34,068 ha) projected to be lost by 2035, the right-of-way needs of the Modal and HST Alternatives would each represent less than 9.4% of the total potential farmland loss. Furthermore, the indirect (cost) effect of the HST Alternative on urban growth would reduce conversion of farmlands by about 3,400 ac (1,375 ha) compared to the No Project Alternative, and about 24,000 ac (9,712 ha) compared to the Modal Alternative on a statewide basis by 2035.

The Modal Alternative would potentially impact substantially more area of sensitive vegetation habitats (four to nearly eight times more), wetlands (over one and a quarter times more), and non-vegetated waters (nearly five times more) than the HST Alternative. The Modal Alternative would also have higher potential impacts on other water resources such as floodplains, streams, and groundwater. On a regional basis, differences in potential impacts on biological resources between the Modal Alternative and HST Alternative are limited to the southern mountain corridor along I-5, where significant ecological areas (SEAs) would be impacted. Modal Alternative improvements to I-5 and SR-14 would involve extensive cut and fill through the mountains that would potentially significant visual and biological impacts in this relatively forested landscape.

The Modal Alternative would generally have greater potential impacts in all regions on public parks, wildlife areas, and recreational resources (Section 4(f) and 6(f) resources) than the HST Alternative because existing transportation corridors are bordered by urban development that includes public parks, recreation areas, and historic properties. Potential exceptions are in the Bay Area to Merced and Santa Cruz to Los Angeles where there could be slightly more impact (Section 4(f) and 6(f) resources) along the HST Alternative than along the Modal Alternative alignments. This is primarily due to the proximity of recreational areas to the existing right-of-way for the HST Alternative through the southern mountain corridor, and the HST alignment options through Henry Cowell State Park that link the Bay Area and the Central Valley in Northern California.

5.7 High-Speed Train Alignment and Station Options

Through a comprehensive screening evaluation covering many regions of the state, numerous alignment and station options have been identified and selected for analysis in the Program EIR/EIS. These alignment and station options are evaluated with existing rail lines, while those that would be a potential noise increase due to additional HST services, existing train noise would be reduced in areas with existing grade crossings because horns and crossing gate noise due to grade separation would be eliminated.

California High-Speed Train Program EIR/EIS

Summary

Under the Modal Alternative, land use impacts would be considerable in the San Francisco to San Jose and Oakland to San Jose highway corridors where the existing rights-of-way would not accommodate adding lanes, and additional properties would be needed to accommodate potential highway expansions. This would also be true along the urban portions of the San Francisco corridor through the Central Valley, and in Southern California along I-880 from Los Angeles to San Bernardino and Riverside. The HST Alternative would have lower impacts in these regions because of extensive use of existing rights-of-way (e.g., Caltrain from San Francisco to San Jose) and higher compatibility in general with land uses along the rail corridors.

In the Central Valley, one of the most active agricultural regions in the U.S., the right-of-way requirements of the Modal Alternative would potentially impact 606 ac (246 ha) of farmlands. The HST Alternative, based on the system-wide application of a 100-ft wide right-of-way, could potentially impact a maximum of 2,596 ac (1,002 ha) to 3,850 ac (1,548 ha). In addition, it is possible to avoid or substantially reduce potential impacts on farmlands in the HST right-of-way by reducing right-of-way width to 50 ft (15 m) in combined areas or, if appropriate agreements with the existing owners/tenants were developed and safety considerations were addressed, by placing the HST infrastructure completely within the existing rail right-of-way. Compared to the trend of farmland loss in California of 50,700 ac (20,413 ha) per year, or nearly 84,000 ac (34,068 ha) projected to be lost by 2035, the right-of-way needs of the Modal and HST Alternatives would each represent less than 9.4% of the total potential farmland loss. Furthermore, the indirect (cost) effect of the HST Alternative on urban growth would reduce conversion of farmlands by about 3,400 ac (1,375 ha) compared to the No Project Alternative, and about 24,000 ac (9,712 ha) compared to the Modal Alternative on a statewide basis by 2035.

The Modal Alternative would potentially impact substantially more area of sensitive vegetation habitats (four to nearly eight times more), wetlands (over one and a quarter times more), and non-vegetated waters (nearly five times more) than the HST Alternative. The Modal Alternative would also have higher potential impacts on other water resources such as floodplains, streams, and groundwater. On a regional basis, differences in potential impacts on biological resources between the Modal Alternative and HST Alternative are limited to the southern mountain corridor along I-5, where significant ecological areas (SEAs) would be impacted. Modal Alternative improvements to I-5 and SR-14 would involve extensive cut and fill through the mountains that would potentially significant visual and biological impacts in this relatively forested landscape.

The Modal Alternative would generally have greater potential impacts in all regions on public parks, wildlife areas, and recreational resources (Section 4(f) and 6(f) resources) than the HST Alternative because existing transportation corridors are bordered by urban development that includes public parks, recreation areas, and historic properties. Potential exceptions are in the Bay Area to Merced and Santa Cruz to Los Angeles where there could be slightly more impact (Section 4(f) and 6(f) resources) along the HST Alternative than along the Modal Alternative alignments. This is primarily due to the proximity of recreational areas to the existing right-of-way for the HST Alternative through the southern mountain corridor, and the HST alignment options through Henry Cowell State Park that link the Bay Area and the Central Valley in Northern California.

5.7 High-Speed Train Alignment and Station Options

Through a comprehensive screening evaluation covering many regions of the state, numerous alignment and station options have been identified and selected for analysis in the Program EIR/EIS. These alignment and station options are evaluated with existing rail lines, while those that would be a potential noise increase due to additional HST services, existing train noise would be reduced in areas with existing grade crossings because horns and crossing gate noise due to grade separation would be eliminated.

California High-Speed Train Program EIR/EIS

Response to Comments
Response to Comments of Wayne K. Tanda, General Manager, Los Angeles Department of Transportation, August 27, 2004 (Letter AL050)

AL050-1
Acknowledged. The Authority has identified the MTA/Metrolink as preferred between Sylmar and Los Angeles. Between Burbank and Los Angeles Union Station, the MTA/Metrolink refers to a relatively wide corridor within which alignment variations will be studied at the project level. The MTA/Metrolink was the only feasible alignment identified between Sylmar and Burbank (along the San Fernando Road Corridor). For this program level process (conceptual level detail of engineering) the HST tracks along the MTA/Metrolink alignment (along with other rail services) were assumed to be in a trench for most of the alignment from just north of Van Nuys Blvd. (near SR-118) to Hollywood Way (near Burbank Airport). North of SR-118 much of the HST infrastructure is assumed to be on an aerial structure (see Figure 6.4-2 of the Draft Program EIR/EIS) through Sylmar and San Fernando. Because of the Pacoima Wash and other obstacles, trenching through this area was not considered to be feasible. Future project specific evaluation of the alignment through the City of Los Angeles could include a design option that puts portions of the HST infrastructure below grade. The design options to be investigated as part of future project specific evaluation(s) would be determined during the scoping period of those studies.

AL050-2
Acknowledged. The Authority has identified Los Angeles Union Station as the preferred site for a potential HST station to serve Los Angeles. Please see standard response 6.39.5 in regards to a potential HST link to LAX.

AL050-3
Please see standard response 6.39.1.

AL050-4
Acknowledged.

AL050-5
Acknowledged.

AL050-6
Acknowledged.

AL050-7
Please see standard response 6.23.1.

AL050-8
Acknowledged. Developing a financing plan and determining whether “the HST system should share in any expanded highway and transit project costs that may be incurred by local entities” is beyond the scope of this program EIR/EIS process. Should the HST proposal move forward, these site-specific issues will be investigated as part of future more detailed studies.

AL050-9
Acknowledged. Please see standard response 10.1.7. Future studies would identify minimal operable segments.

AL050-10
Acknowledged. The Authority looks forward to continuing to work cooperatively with LADOT, SCAG, the City of Ontario, the San Bernardino Council of Governments and other local entities on future HST studies. Please see response AL065-1.
AL050-11
Acknowledged. If the HST proposal moves forward, the Authority would continue to coordinate with the LADOT and other local agencies. During project specific environmental studies, the Authority would seek to coordinate HST planning with the various plans of regional and local government agencies, including major airports such as LAX, Ontario, and Palmdale.

AL050-12
Acknowledged. Please see standard response 6.23.1. The Authority has identified a preferred HST system that connects as directly as possible with Los Angeles Union Station, Ontario Airport, and Palmdale Airport. Please see standard response 6.39.1 in regards to a potential direct connection with LAX.